cover image HACKING MATTER: Levitating Chairs, Quantum Mirages, and the Infinite Weirdness of Programmable Atoms

HACKING MATTER: Levitating Chairs, Quantum Mirages, and the Infinite Weirdness of Programmable Atoms

Wil McCarthy, . . Basic, $26 (240pp) ISBN 978-0-465-04428-3

In 1962, Arthur C. Clarke offered three laws of technological development, the last of which reads: "Any sufficiently advanced technology is indistinguishable from magic." Expanding on an article he wrote for Wired, McCarthy uses Clarke's law as a jumping-off point for a grand tour of cutting-edge "quantum dot" research, a field that seems like nothing so much as alchemy, 21st-century style. Quantum dots are tiny pieces of semiconductor that can trap electrons, with a remarkable consequence: "the electrons trapped in a quantum dot will arrange themselves as though they were part of an atom, even through there's no atomic nucleus for them to surround." The result is an artificial atom, maybe 50 times larger than a natural one, that can simulate the properties of any element on the periodic table by catching or releasing additional electrons. McCarthy offers an extensive survey of both the science behind such "programmable matter" and the scientists developing it, reveling in applications as far-ranging as walls that light a room with their own radiant glow, cars that levitate along magnetic streets, and TV screens that "look less like a moving picture and more like a window into a real, three-dimensional space." The author, an engineer as well as a writer, is a part of the story himself, holding a patent for an application of quantum dots that he calls "wellstone" (his patent application is included as an appendix), and he makes an informative but at times technically dense case for the promising, even magical, potential of programmable atoms. (Apr.)

Forecast:Definitely for techno-junkies, not the average curious reader.